Received 28 October 2008,

Revised 8 December 2008,

Accepted 9 December 2008

Published online 16 January 2009 in Wiley Interscience

(www.interscience.wiley.com) DOI: 10.1002/jlcr.1577

Synthesis of [¹⁴C] labeled 2-methoxypyrimidine-5-carboxylic acid

Akula Murthy, and Giliyar Ullas*

A versatile method for ¹⁴C labeling of 2-methoxypyrimidine-5-carboxylic acid at the 2-position has been developed after encountering difficulties with traditional approaches to label the carboxyl function. The method developed can also be used for ¹⁴C labeling other positions of the pyrimidine ring system.

Keywords: [¹⁴C] 2-methoxyprimidine-5-carboxylic acid; [¹⁴C] *O*-methylisourea hydrochloride

Introduction

The syntheses of 2-methoxypyrimidine-5-carboxylic acids with a ¹⁴C label at the 2-position of the pyrimidine ring **2**, or at 4-, 5- and 6-positions of **3** involve multi-step process compared to the simple introduction of ¹⁴C on the carboxyl function of **1** (Figure 1). This report discusses our initial attempts to synthesize carboxyl labeled 2-methoxypyrimidine-5-carboxylic acid and our eventual success in preparing ring labeled title compound.

Results and discussion

Labelling of carboxyl function of **1** was attempted by employing known methods such as metal-halogen exchange/Grignard reactions¹⁻² and treatment with [¹⁴C] CO₂. None of these methods resulted in the synthesis of desired ¹⁴C labeled carboxylic acid derivative. Thus, when 5-bromo-2-methoxypyrimidine was reacted with *n*-BuLi followed by [¹⁴C] CO₂ at -78 to -20° C, the reaction gave an unidentified product along with unreacted starting material.

Aromatic nitriles are well-known precursors for the corresponding carboxylic acids.³ Aryl nitriles have been prepared by cyanation of iodides or bromides using CuCN or KCN in absence of solvent or in solvents like pyridine, quinoline, DMF, NMP at elevated temperature.^{4–11} Under Von Braun conditions the reaction of 5-bromo-2-methoxypyrimidine with [¹⁴C] CuCN in DMF at 145°C for 48 h did not yield cyano derivative.

Palladium catalyzed cyanations of aryl bromides promoted by organotin compounds have been successfully used for the preparation of a number of aryl cyanides including 3-cyanopyridine and 3-cyanoquinolines.¹² However, reaction of 5-bromo-2-methoxypyrimidine with [¹⁴C] KCN under these conditions resulted only in the recovery of starting material.

The synthesis of 2-methoxypyrimidine-5-carboxylic acid **2** with a label at 2-position of pyrimidine ring is an alternative choice. A number of synthetic methods are reported in the literature for pyrimidine 5-carboxylic acid derivatives.¹³⁻¹⁶ However, a few direct approaches leading to pyrimidine ring that lacks substitution at 4-position have been reported.¹⁷⁻¹⁹

Our approach to compound **2** is as depicted in Scheme 1. [¹⁴C] barium cyanamide (**4**) was converted to [¹⁴C] cyanamide (**5**) by the treatment with aqueous H_2SO_4 in 75% yield. Reaction of [¹⁴C] cyanamide (**5**) with anhydrous CH₃OH in the presence of dry HCl gas for 3 days according to the literature method²⁰ gave [¹⁴C] *O*-methylisourea hydrochloride (**6**).

In parallel, the sodium salt of 3,3-dimethoxy-2-methoxycarbonylpropen-1-ol (**7**) was synthesized by the condensation of methyl formate with methyl 3,3-dimethoxypropionate in the presence of NaH as described in the literature.¹⁹ The sodium salt **7** was reacted with [¹⁴C] *O*-methylisourea hydrochloride (**6**) in DMF at 100°C to give [2-¹⁴C] methyl 2-methoxypyrimidine-5carboxylate (**8**) in 70% yield, identified by ¹H NMR. The hydrolysis of ester **8** was carried out by heating with 2 N NaOH in aqueous dioxane.²¹ [2-¹⁴C] 2-methoxypyrimidine-5-carboxylic acid (**2**) was isolated after acidification of the mixture with 2 N HCl in 97% yield and radiochemical purity of 98.41% by HPLC. Specific activity was determined to be 56.4 mCi/mmol. The overall yield of [2-¹⁴C] 2-methoxypyrimidine-5-carboxylic acid was 13.7% from **4**.

This methodology led to a successful labeling in the 2-position. This approach may also be applied to other pyrimidine carboxylic acid derivatives **3** with ¹⁴C labeling at the 4-, 5- and/or 6-position by using appropriately labeled methyl formate or methyl 3,3-dimethoxypropionate. Labeling can also be extended to the carboxyl moiety as well using this scheme starting from **7** labeled at the ester carbon.

Experimental

All reagents and solvents were purchased from Sigma-Aldrich Chemical Company. [¹⁴C] Barium cyanamide was obtained from

*Correspondence to: Giliyar Ullas, PerkinElmer Life and Analytical Sciences Inc., 549 Albany Street, Boston, MA 02118, USA. E-mail: ailiyar.ullas@perkinelmer.com

PerkinElmer Life and Analytical Sciences Inc., 549 Albany Street, Boston, MA 02118, USA

I.U.T. GmbH, Germany. ¹H NMR spectra were recorded on a Bruker 300 MHz spectrometer. Internal TMS was used as a reference standard. The final product was identified by HPLC comparison with commercially available material on a Zorbax SB C-18 column using (A) 0.1% TFA in H₂O (B) CH₃CN, 0–50% B linear gradient in 25 min, holding 50% B for 5 min, 1 ml/min, UV 254 nm.

[¹⁴C] cyanamide (5)

To a suspension of [¹⁴C] barium cyanamide (**4**) (1200 mCi, specific activity 57.6 mCi/mmol, 20.8 mmol) in H₂O (14 ml) cooled to 0–5°C, was added conc. H₂SO₄ (1.05 ml, 20.8 mmol) drop wise during about 15 min. The resulting white suspension was stirred at 0–5°C for 1 h and centrifuged. The supernatant liquid was decanted and the residue stirred with H₂O (10 ml) and centrifuged. The process was repeated and the combined supernatant was extracted with EtOAc (10 × 30 ml). The organic extract was dried over Na₂SO₄, filtered and the solvent was removed in vacuum to yield a colorless solid (904 mCi, 75.3%). The product co-chromatographed with standard by radio-TLC on avicel plate using *n*-BuOH: NH₄OH: H₂O (12:3:5) as solvent system.

[¹⁴C] O-methylisourea hydrochloride (6)

Anhydrous HCl gas was bubbled through a solution of **5** (335 mCi, 5.82 mmol) in anhydrous CH₃OH (5.0 ml) for 15 min. The reaction flask containing colorless solid was sealed and set aside at ambient temperature for 3 days. The solvent was removed under reduced pressure and the solid obtained was dried in a vacuum desiccator over P_2O_5 and KOH overnight. The [¹⁴C] *O*-methylisourea hydrochloride (**6**) obtained (0.46 g, 242 mCi, 72.2%) was used in the next reaction without further purification. ¹H NMR (DMSO-d₆): δ 8.7 (bs, NH₂), 3.96 (s, 3H, CH₃).

Figure 1. 2-Methoxyprimidine-5-carboxylic acids with $[^{14}\mbox{C}]$ label at different positions.

[2-¹⁴C] methyl 2-methoxypyrimidine-5-carboxylate (8)

A mixture of 6 (242 mCi, 4.20 mmol) and sodium 3,3dimethoxy-2-carbomethoxyprop-1-en-1-oxide $(7)^{19}$ (0.96 a, 4.83 mmol) in DMF (8.0 ml) was heated to 110°C and maintained for 2 h. The reaction mixture was cooled to ambient temperature and H₂O (30.0 ml) was added. The solid separated was extracted with CH_2Cl_2 (3 \times 30.0 ml). The combined organic extracts was dried over MgSO₄ and filtered. The filtrate (214 mCi) was concentrated under vacuum to yield a yellow solid. Radio-TLC analysis on silica gel plate [hexane: EtOAc (1:1)] indicated about 93% of the product co-eluting with the standard. The crude material was purified by a silica gel flash chromatography using hexane: EtOAc (9:1) as the eluent. Homogenous fractions were pooled and the solvent was removed under vacuum to yield [2-14C] methyl 2-methoxypyrimidine-5-carboxylate (8) as a colorless solid (170 mCi, 70.3%). ¹H NMR (CDCl₃): δ 9.08 (s, 2H, H-4 and 6), 4.09 (s, 3H, CH₃) and 3.9 (s, 3H, CH₃)

[2-¹⁴C] 2-methoxypyrimidine-5-carboxylic acid (2)

To a solution of **8** (170 mCi, 2.95 mmol) in a mixture of dioxane: H₂O (1:1, 34.0 ml) was added 2 N NaOH (1.77 ml, 3.54 mmol) and stirred at ambient temperature overnight. The clear solution was concentrated under reduced pressure to ~1 ml and diluted with H₂O (10.0 ml). Resulting turbid aqueous solution was washed with CHCl₃ (10.0 ml) and acidified with 2 N HCl to pH 2. Colorless solid was filtered, washed sequentially with H₂O (2 × 2.0 ml), H₂O: CH₃CN (1:1, 2×2.0 ml) and dried to a constant weight. The product obtained was identified as [2-¹⁴C] 2-methoxypyrimidine-5-carboxylic acid (**2**) (0.45 g, 96.84%) with a radiochemical purity of 98.4% by HPLC. ¹H NMR (DMSO-d₆): δ 9.03 (s, 2H, H- at 4 and 6), 4.00 (s, 3H, CH₃), specific activity: 56.4 mCi/mmol determined by weight assay.

Acknowledgement

We wish to thank Crist Filer, Terry Kelly and Linda Lacy of PerkinElmer Life and Analytical Sciences Inc., for their valuable suggestions. We also acknowledge Mario Maniscalco for ¹H NMR and HPLC data.

Scheme 1. Synthesis of [2-14C] 2-methoxypyrimidine-5-carboxylic acid.

References

- [1] A. Murray III, W. H. Langham, J. Am. Chem. Soc. **1952**, 74, 6289–6295.
- [2] V. Grignard, Ann. Chim. **1901**, 24, 433–490.
- [3] C. A. Buehler, D. E. Pearson, Survey of Organic Synthesis, chapter 13, Wiley Interscience, New York, 1970, pp. 752–755 and references cited therein.
- [4] A. Pongrantz, Monatsh. Chem. 1927, 48, 585.
- [5] A. Pongratnz, Monatsh. Chem. **1929**, 52, 7.
- [6] K. W. Rosenmund, E. Struck, Chem. Ber. 1919, 52, 1749–1756.
- [7] J. von Braun, G. Manz, Liebigs Ann. Chem. 1931, 488, 111–126.
- [8] D. T. Mowry, Chem. Rev. 1948, 42, 189–283.
- [9] K. Fiedrich, K. Wallenfels, in: *The Chemistry of the Cyano Group* (Ed.: Z. Rappoport), Interscience, London, 1970, p. 67.
- [10] L. Friedman, H. Shechter, J. Org. Chem. 1961, 26, 2522–2524.

- [11] M. S. Newman, H. Boden, J. Org. Chem. 1961, 26, 2525.
- [12] C. Yang, J. M. Williams, Org. Lett. 2004, 6, 2837–2840.
- [13] R. Urban, O. Schnider, *Helv. Chim. Acta* **1958**, *41*, 1806.
- [14] S. Kohra, Y. Tominaga, A. Hosomi, J. Heterocycl. Chem. 1988, 25, 959–968.
- [15] A. Lorente, L. Vaquerizo, A. Martin, P. Gomez-Sal, *Heterocycles* 1995, 41, 71–86.
- [16] A. Guzman, M. Romero, F. X. Talamas, R. Villena, R. Greenhouse, J. M. Muchowski, J. Org. Chem. **1996**, 61, 2470–2483.
- [17] P. Schenone, L. Sansebastiano, L. Mosti, J. Heterocycl. Chem. 1990, 27, 295–305.
- [18] E. Dyer, T. B. Johnson, J. Am. Chem. Soc. 1934, 56, 222–225.
- [19] P. Zhichkin, D. J. Fairfax, S. A. Eisenbeis, Synthesis 2002, 720–722.
- [20] F. Kurzer, A. Lawson, Organic Syntheses, Vol. 4, Wiley, New York, 1963, pp. 645–649.
- [21] G. Brooks, E. Hunt, S. Howard, US Patent 0114674, 2003.